Jacobians of singularized spectral curves and completely integrable systems

نویسنده

  • Lubomir Gavrilov
چکیده

We state two recent results concerning the linearization of integrable systems on generalised Jacobians. Then we apply this to the (complexified) spherical pendulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lie Theoretic Galois Theory for the Spectral Curves of an Integrable System. Ii

In the study of integrable systems of ODE’s arising from a Lax pair with a parameter, the constants of the motion occur as spectral curves. Many of these systems are algebraically completely integrable in that they linearize on the Jacobian of a spectral curve. In an earlier paper the authors gave a classification of the spectral curves in terms of the Weyl group and arranged the spectral curve...

متن کامل

Generalized Jacobians of spectral curves and completely integrable systems

M P = {A(x) ∈ M : det(A(x)− yIr) = P (x, y)}. The system (1) has an obvious symmetry group G = IPGLr(I C; J) which is the subgroup of the projective group IPGLr(I C) formed by matrices which commute with J . The group G acts on M by conjugation, the action is Poisson, and the reduced Hamiltonian system is completely integrable too. As the symmetry group G acts freely and properly on the general...

متن کامل

Affine Jacobians of Spectral Curves and Integrable Models

We explicitly construct the algebraic model of affine Jacobian of a generic algebraic curve of high genus and use it to compute the Euler characteristic of the Jacobian and investigate its structure.

متن کامل

ar X iv : m at h / 99 02 06 8 v 3 [ m at h . A G ] 1 8 N ov 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

ar X iv : m at h / 99 02 06 8 v 2 [ m at h . A G ] 6 M ar 1 99 9 SPECTRAL CURVES , OPERS AND INTEGRABLE SYSTEMS

We establish a general link between integrable systems in algebraic geometry (expressed as Jacobian flows on spectral curves) and soliton equations (expressed as evolution equations on flat connections). Our main result is a natural isomorphism between a moduli space of spectral data and a moduli space of differential data, each equipped with an infinite collection of commuting flows. The spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001